什么样的图形能一笔画成呢?

这就是一笔画问题,它是一种有名的数学游戏.所谓一笔画,就是从图形上的某点出发,笔不离开纸,而且每条线都只画一次不准重复.

我们把一个图形中与偶数条线相连接的点叫做偶点.相应的把与奇数条线相连接的点叫做奇点.

一笔画问题

(1) 能一笔画出的图形必须是连通的图形;

(2) 凡是只由偶点组成的连通图形.一定可以一笔画出.画时可以由任一偶点作为起点.最后仍回到这点;

(3) 凡是只有两个奇点的连通图形一定可以一笔画出.画时必须以一个奇点作为起点.以另一个奇点作为终点;

(4) 奇点个数超过两个的图形,一定不能一笔画.

多笔画问题

我们把不能一笔画成的图,归纳为多笔画.多笔画图形的笔画数恰等于奇点个数的一半.事实上,对于任意的连通图来说,如果有2n个奇点(n为自然数),那么这个图一定可以用n笔画成.

重难点

(1) 知道什么样的的是奇点?什么样的点是偶点。

(2) 知道什么样的图形可以一笔画出。

(3) 不能一笔画出的图形叫做多笔画图形,多笔画图形的笔画数与什么有关呢?

有一个著名的数学故事——哥尼斯堡七桥问题。哥尼斯堡是立陶宛共和国的一座城市,布勒格尔河从城中穿过,河中有两个岛,18世纪时河上共有七座桥连接A,B两个岛以及河的两岸C,D(如下图)。

小学奥知识点:一笔画问题(2)

所谓七桥问题就是:一个散步者要一次走遍这七座桥,每座桥只走一次,怎样走才能成功?

当时的许多人都热衷于解决七桥问题,但是都没成功。后来,这个问题引起了大数学家欧拉(1707-1783)的兴趣,许多人的不成功促使欧拉从反面来思考问题:是否根本就不存在这样一条路线呢?经过认真研究,欧拉终于在1736年圆满地解决了七桥问题,并发现了一笔画原理。欧拉是怎样解决七桥问题的呢?因为岛的大小,桥的长短都与问题无关,所以欧拉把A,B两岛以及陆地C,D用点表示,桥用线表示,那么七桥问题就变为右图是否可以一笔画的问题了。例题与方法指导

例1:

下图是某展览馆的平面图,一个参观者能否不重复地穿过每一扇门?如果不能,请说明理由。如果能,应从哪开始走?

小学奥知识点:一笔画问题(2)

【解析】

我们将每个展室看成一个点,室外看成点E,将每扇门看成一条线段,两个展室间有门相通表示两个点间有线段相连,于是得到右图。能否不重复地穿过每扇门的问题,变为右图是否一笔画问题。

例2:

小学奥知识点:一笔画问题(2)

一个邮递员投递信件要走的街道如下页左上图所示,图中的数字表示各条街道的千米数,他从邮局出发,要走遍各街道,最后回到邮局。怎样走才能使所走的行程最短?全程多少千米?

小学奥知识点:一笔画问题(2)

【解析】

图中共有8个奇点,必须在8 个奇点间添加4条线,才能消除所有奇点,成为能从邮局出发最后返回邮局的一笔画。在距离最近的两个奇点间添加一条连线,如左上图中虚线所示,共添加4条连线,这4条连线表示要重复走的路,显然,这样重复走的路程最短,全程30千米。走法参考右上图(走法不唯一)。例3:

在18世纪的哥尼斯堡城里有七座桥。当时 有很多人想要一次走遍七座桥,并且每座桥只能经过一次。这就是世界上很有名的哥尼斯堡七桥问题。你能一次走遍这七座桥,而又不重复吗?(自己动手画画吧)

小学奥知识点:一笔画问题(2)

答案:

这个问题,实际上是一笔画问题。

一笔画就是一笔可以画成一个图。